ITAP: In-network Traffic Analysis Prevention
using Software-Defined Networks

https://itap.ethz.ch

Roland Meier
ETH Zirich
meierrol@ethz.ch

ABSTRACT

Advances in layer 2 networking technologies have fostered
the deployment of large, geographically distributed LANSs.
Due to their large diameter, such LANs provide many van-
tage points for wiretapping. As an example, Google’s inter-
nal network was reportedly tapped by governmental agen-
cies, forcing the Web giant to encrypt its internal traffic.
While using encryption certainly helps, eavesdroppers can
still access traffic metadata which often reveals sensitive
information, such as who communicates with whom and
which are the critical hubs in the infrastructure.

This paper presents iTAP, a system for providing strong
anonymity guarantees within a network. iTAP is network-
based and can be partially deployed. Akin to onion rout-
ing, iTAP rewrites packet headers at the network edges by
leveraging SDN devices. As large LANs can see millions
of flows, the key challenge is to rewrite headers in a way
that guarantees strong anonymity while, at the same time,
scaling the control-plane (number of events) and the data-
plane (number of flow rules). iTAP addresses these chal-
lenges by adopting a hybrid rewriting scheme. Specifically,
iTAP scales by reusing rewriting rules across distinct flows
and by distributing them on multiple switches. As reusing
headers leaks information, iTAP monitors this leakage and
adapts the rewriting rules before any eavesdropper could
provably de-anonymize any host.

We implemented iTAP and evaluated it using real network
traffic traces. We show that iTAP works in practice, on
existing hardware, and that deploying few SDN switches is
enough to protect a large share of the network traffic.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. .. $15.00
DOTI: http://dx.doi.org/10.1145/3050220.3050232

David Gugelmann
ETH Zdrich
gugelmann@tik.ee.ethz.ch

Laurent Vanbever
ETH Zirich
Ivanbever@ethz.ch

CCS Concepts

eSecurity and privacy — Pseudonymity, anonymity and
untraceability; Network security; eNetworks — Network
privacy and anonymity; Programmable networks;

Keywords

Anonymous communication; wiretapping; SDN

1. INTRODUCTION

Since the Snowden revelations, it is well-known that net-
work eavesdropping was (and probably still is) performed in
the Internet core, particularly on undersea cables [22]. While
worrying, these threats can be mitigated to a large degree
by hiding connection metadata (e.g., using Tor [14]) and by
relying on pervasive encryption (e.g., using VPNs).

However, network eavesdropping is not limited to the
Internet backbone. As enterprise networks become bigger in
terms of users and physical reach, they, too, become suscep-
tible to wiretapping. Indeed the advent of new layer 2 tech-
nologies such as TRILL [7], Shortest Path Bridging [30], or
SDN-based solutions [34] enables network administrators to
build large LAN zones that can easily span several thousand
devices and users. Due to their large physical diameter,
such networks inevitably exhibit many vantage points for
wiretapping. Actually, the majority of the attacks is now
performed by insiders, i.e. malicious insiders or inadvertent
actors [4] that act from within the network, rather than by
remote attackers. As an example, Google’s Wide-Area Net-
work (WAN) — the private network connecting Google’s data
centers — was reportedly tapped by governmental agencies,
forcing the Web giant to encrypt its internal traffic [36].

While encrypting internal traffic protects the payload of
connections, an in-network attacker can still monitor and
analyze the unencrypted packet headers, i.e., the metadata.
In particular, the MAC addresses and, in case of SSL/TLS
application layer encryption, also the IP addresses of the
source and destination hosts along with the source and des-
tination ports used for the communication.

By analyzing these unencrypted header fields, an attacker
can gain useful information about: i) which hosts commu-
nicate; ii) the topology of the network; iii) the addresses of

http://dx.doi.org/10.1145/3050220.3050232

32 - 255. ...

destination IP

.
o
e o

-

o . H .
y .
288000 NP .

.
10.0.0.0 10.0.0.16 10.0.0.32 0.00.0
source IP source IP

(b) iTAP-enabled network

(a) Regular network

Figure 1: Example of information leakage. Observed source
and destination IP addresses without (a) and with iTAP (b).

important hosts driving a lot of traffic (e.g., data storage) or
a lot of flows (e.g., authentication server). An eavesdropper
can use the collected metadata to extract privacy-relevant
information, or to identify valuable targets during the re-
connaissance phase of an attack. To give some examples:
First, an attacker, engaged by a competitor, could easily
determine whether a certain person (e.g., the CEO) is cur-
rently working or on holidays by monitoring network traffic.
Her absence might indeed be a good occasion to launch a
new product or a campaign against the attacked company.
Second, an attacker can foresee the future actions of the
company [41]. Indeed, the launch of a new product is often
preluded by a significantly higher-level of communication
between a broad range of departments. Third, an attacker can
infer the addresses of important or heavily-used hosts (e.g.,
authentication and accounting servers) as well as who is
accredited to use them. In a following step, the attacker could
then run a targeted attack against these clients or servers.

This work. We present iTAP, a partially deployable network-
level system that enables anonymous communication within
the premises of a network. The key insight is to leverage the
programmability offered by Software-Defined Networking
(SDN) to rewrite packet headers at the network edge to
varying randomized identifiers. iTAP is useful with as few as
two SDN devices and its anonymity guarantees grow linearly
with the number of SDN devices from thereafter.

With iTAP in place, in-network eavesdroppers only see
randomized IDs (which carry no information) as headers and
cannot single out hosts unless they eavesdrop on all links
of a path, which is unlikely in practice. As an illustration,
Fig. 1 shows the distribution of source and destination IP
addresses observed by a link-level eavesdropper with and
without iTAP. Without iTAP, it is evident that 18 clients
and six servers are communicating with each other. With
iTAP, the observed IP addresses are spread over the whole
address range and neither the real addresses nor the number
of communicating hosts is recognizable.

Challenge: Providing network anonymity at scale. Rewrit-
ing packet headers for thousands of hosts and millions of
flows while ensuring strong anonymity guarantees is chal-

lenging. From an anonymity viewpoint, the best rewriting
solution consists in assigning one random ID per TCP/UDP
flow. Yet, not only does this require millions of forwarding
rules in the data plane, but it also mandates a purely reactive
controller which has to be involved in each connection es-
tablishment. From a scalability viewpoint, the best solution
would be to assign one random ID per host and reuse it for
all flows pertaining to that host. Doing so would only require
two forwarding rules per host at the edge, i.e., a marginal
increase with respect to today’s networks, and could even
be done proactively so that the controller does not have to
be involved in any connection establishment. However, this
would not provide strong anonymity, e.g., an attacker could
still easily count the number of devices in the network.

iTAP solves the scalability and privacy problems of these
approaches while retaining their strengths by employing a
hybrid approach. In particular, iTAP reuses IDs across dis-
tinct flows so as to maintain the overall number of forward-
ing rules to an acceptable level. Reusing rules leaks some
information out to potential eavesdropper, namely which bits
in the IDs identify hosts and where these hosts are con-
nected. iTAP addresses this problem by continuously moni-
toring the amount of leaked information and by adapting the
rewriting scheme before any attacker could provably (relying
on information theory and the notion of the unicity distance)
learn enough information to break the used scheme.

Reusing IDs enables iTAP to maintain O (#hosts) for-
warding rules in the core and O (#hosts®) at the edge. While
this number of forwarding rules is perfectly manageable for
users-facing edge switches (see §9), it can however be a
problem for Internet-facing edges which act as focus points
for any flow directed to the outside. iTAP addresses this
problem by monitoring each edge switch (in terms of flow
rules or updates per second) and by offloading obfuscation
rules for Internet destinations on other switches before any
switch limit is reached. While offloading obfuscation rules
reveals the actual Internet destinations on some links, the
anonymity of internal hosts is still protected anywhere in the
network and an attacker cannot know who is communicating
with a particular destination.

Practical results. iTAP works in practice. We implemented
a prototype on top of Floodlight [43] and evaluated iTAP
using real traffic traces. Our results show that iTAP can
handle the load of a large network using commodity SDN
hardware.

Novelty. Communicating anonymously has been the focus
of extensive research [12-14, 24]. Yet, we are not aware
of any other work which focuses on anonymizing internal
communications without requiring host support. In partic-
ular, Tor [14] and Hornet [13] both require host support.
Recently, MACSec [5] has been developed to provide link-
based encryption for traffic beyond L2 (MAC addresses
are not encrypted). In contrast, iTAP provides network-
based anonymization for traffic beyond L1 (i.e., the MAC
addresses are also protected). Furthermore, iTAP provides
anonymity guarantees when partially deployed, which is not
the case for MACSec.

Main contributions. Our main contributions are:

e The design of iTAP (§3), a network-level anonymity sys-
tem which provides strong anonymity guarantees in the
presence of a powerful attacker (§2). With iTAP, an eaves-
dropper cannot determine whether two flows originate or
terminate at the same host (assuming payload encryption).

e A header rewriting scheme (§4) which enables iTAP to
scale to large networks while providing strong anonymity
guarantees. As an added benefit, our rewriting scheme
enables iTAP to locate active attackers (§6).

e An efficient migration strategy for iTAP which allows to
gradually increase the anonymity level in a network (§7).

e A prototype implementation (§8) of iTAP on top of the
Floodlight SDN controller. We will make our implemen-
tation publicly available.

e A comprehensive evaluation based on real traffic traces
containing millions of flows representing the activity of
400 users and showing that iTAP can handle realistic
network load while preserving user anonymity (§9).

2. NETWORK AND THREAT MODEL

In this section, we describe the network iTAP is designed
to be used in and the threat iTAP is designed to protect from.

Network model. We consider the case of an internal net-
work which is managed by a single managing authority.
We assume that the network is composed of traditional de-
vices, i.e., routers and switches, along with a subset of SDN
switches. Routers are running normal routing protocols (e.g.,
OSPF and BGP) while traditional switches are running some
flavors of the Spanning Tree Protocol (STP). In the rest of the
paper (and without loss of generality), we assume that the
network is mostly based on L2 technologies, with most of
the routing being done at the gateway to the Internet—one of
the most common design patterns in enterprise networks [3].
Fig. 2 illustrates an example of such a network.

SDN switches are controlled by one or more (for redun-
dancy) iTAP controller via secure (TLS-enabled) connec-
tions. The iTAP controller also participates in any routing
or spanning tree protocol to learn about the legacy topology
and to interact with it. By programming forwarding rules in
the SDN switches, iTAP can arbitrarily rewrite the packet
headers as well as influence the forwarding of packets cross-
ing these devices. We refer to the first SDN-switch that a
packet traverses as ingress switch. Similarly, we refer to the
last SDN switch traversed by a packet before reaching the
destination as egress switch.

Since iTAP focuses on anonymizing packet headers, we
assume that the payload of the transport layer protocol is
either encrypted or does not reveal information about the
communicating parties.

Attacker model. We consider an active (or passive) network
attacker whose goal is to collect useful information about the
network including: (i) who is communicating with whom;

Controller

X h4
Switches Flows
. OpenFlow Regular iTAP protection
region
@ MAC-learning = = Regular (rewritten)

Figure 2: iTAP overview. The network consists of SDN-
enabled switches and traditional L2-switches. The flows are
rewritten between the ingress and the egress switch.

(ii) the presence or absence of particular users; (iii) the
number of flows initiated or received by each host; (iv) the
topology; or (v) the addresses of potential attack-targets.

For doing so, the attacker can: (i) eavesdrop on a subset
of the internal network links and have full access to the
exchanged traffic (Ethernet headers and payloads); (ii) arbi-
trarily inject packets on eavesdropped links; and (iii) control
a set of hosts connected to the network and craft arbitrary
network packets on these hosts.

Out of scope. We note that:

(i) The first and last hop, i.e., the network link connecting
hosts to the corresponding SDN switches, cannot be pro-
tected without installing software on the end host (see §3.3).

(ii) While the attacker can compromise a subset of hosts,
we assume that the attacker can neither access nor manip-
ulate the software and configuration running on the net-
working devices and on the controller. Indeed, while it is
relatively easy to tap on links spanning a large geographical
region, owning the network devices themselves is much
harder. In §10, we relax this assumption and discuss the
consequences of having attackers additionally controlling a
subset of the SDN switches.

3. OVERVIEW

In this section, we provide an informal overview of our
anonymization approach. We first discuss the key mecha-
nisms behind iTAP (§3.1). We then present the core an-
onymity properties provided by iTAP pertaining to commu-
nication, volume and topology, respectively (§3.2). Finally,
we describe iTAP’s two main limitations (§3.3): information
leakage coming from the payload and timing attacks, which
is a fundamental limitation of low-delay anonymity systems.

3.1 iTAP

An iTAP-enabled network (see Fig. 2) consists of SDN-
enabled switches along with traditional L2 switches con-
trolled by an iTAP controller. The main functionality pro-
vided by iTAP is flow obfuscation at scale. To do so, iTAP
leverages an adaptative hybrid obfuscation scheme where

no rewriting unique ID virtual addresses iTAP hybrid approach
Sforwarding paradigm destination MAC flow destination address destination ID
rules in core switches O (#hosts) O (#flows) O (#hosts) O (#hosts)
rules in edge switches O (#hosts) O (#flows) O (#hosts) O (#hosts®)
anonymity guarantees none high medium high

Table 1: Intuitive rewriting techniques are either costly in terms of flow rules or provide little anonymity. In contrast, iTAP

hybrid approach provides both scalability and anonymity.

multiple flows share the same obfuscation header and where
the obfuscation scheme is adapted before any attacker can
learn enough information to break it. In addition to traf-
fic obfuscation, iTAP can detect the attackers position by
monitoring unexpected entry points for obfuscated traffic
(e.g., an attacker trying to probe an obfuscated header). iTAP
supports partial deployment and does not require a network
solely consisting of OpenFlow switches to be useful. We
now briefly describe these aspects.

Obfuscating traffic at scale (§4). Upon the first flow be-
tween two hosts (say hl and h4 in Fig. 2), iTAP: (i) com-
putes an obfuscated header for the pair (h1, h4); (ii) installs
rewriting rules on the ingress (first) and egress (last) switches
along with forwarding rules (matching on a random subset of
the obfuscated header) on the core switches; and (iii) pushes
the first packet of the flow directly to its egress switch. The
installed rules can be used for any flow between hl and h4.

To prevent an attacker from determining the real source
and destination of a packet, iTAP obfuscates the addresses,
both at L2 (MAC addresses) and at L3 (IP addresses). We
refer to the concatenation of all address fields (MAC and IP)
as the header bitstring h.

From a pure anonymity viewpoint, the best solution would
be to replace h by a random value for each flow. The attacker
in Fig. 2 would then observe uniform random addresses.
While the rewritten header i would not reveal any informa-
tion about h, this approach does not scale as the controller
would need to be involved for each flow. Switches would
also have to carry potentially millions of forwarding rules.

To achieve better scalability, one could replace each ad-
dresses individually, that is, the source addresses by a source
ID and the destination addresses by a destination ID. All
packets from the same source or towards the same destina-
tion would then have the same source or destination IDs and
the switches forward packets based on their destination IDs.
While this approach scales well, it provides poor anonymity
guarantees because an eavesdropper can immediately de-
termine which flows have the same source or destination.
Considering Fig. 2, the attacker could easily group the flows
sharing the same endpoints.

In contrast, iTAP uses a hybrid rewriting approach (see
Table 1). In iTAP, h consists of a few bits that identify the
source and the destination of the flow and many random bits.
As we will describe later, the non-random bits and the ran-
dom bits are mixed such that for a given h, it is impossible to
distinguish between non- random and random bits. By using
the existing header fields to encode the source and destina-

tion identifier, iTAP does not need to attach additional labels
to a packet and therefore does neither increase a packet’s
size, nor decrease the MTU of the network. Considering
Fig. 2, the attacker can neither determine the real source or
destination of a flow nor can she decide whether two flows
originate or terminate at the same host.

Guaranteeing obfuscation quality over time (§5). iTAP
continuously monitors the amount of information that is ex-
posed to a potential eavesdropper. As the packet header is the
same for each flow between a pair of hosts, an eavesdropper
can indeed try to infer which bits are used for forwarding
and with this, infer the location of the source and destination
hosts. To avoid this, iTAP continuously monitors how much
information any attacker could infer and changes the encod-
ing before the attacker could provably have learned enough
to break iTAP’s obfuscation scheme.

Detecting the exact location of attackers (§6). As iTAP
is aware of the legitimate flows in the network (along with
their location), it can raise an alert if it detects a packet
that is not part of a known flow. This alert together with
the location where the unexpected packet arrived allows the
network operator to locate an attacker that injects traffic at a
link. For example, an attacker that injects a packet between
two switches (Fig. 2) will be immediately detected unless
the injected packets have the same source and destination ID
as one of the legitimate flows crossing this link.

Supporting partial deployment (§7). iTAP does not require
a network solely consisting of OpenFlow switches. Instead,
traditional L2 switches can be used at any location in the
network. The controller makes sure that packets which are
crossing such legacy switches will have the destination MAC
address set to one that belongs to the next OpenFlow switch.
Doing so, iTAP can protect a segment of the network with
as little as two OpenFlow switches (e.g., SW1 and sw2 in
Fig. 2) or the whole network with (software or hardware)
OpenFlow switches at the edge.

3.2 Anonymity guarantees

iTAP provides three core privacy guarantees for packets
within iTAP’s protection region, i.e. the links between the
ingress and egress SDN switches:

[G1] Communication anonymity. iTAP hides who is com-
municating with whom. By replacing the source and desti-
nation addresses by pseudo-random identifiers, iTAP makes
it impossible for eavesdropper to determine the real source
and destination based on the packet header. While iTAP does

not hide the TCP/UDP ports by default, it could easily do
so as well. As described above, this comes at the price of
scalability if performed on all flows. Yet, it could be done
for specific applications (i.e., specific ports).

[G2] Volume anonymity. iTAP hides how much traffic
(measured in bytes or number of connections) any two hosts
exchange. Specifically, iTAP’s adaptive obfuscation scheme
prevents an eavesdropper from inferring that a given set of
flows are exchanged between the same endpoints. Among
others, this prevents the eavesdropper from identifying im-
portant hosts (acting as potential choke points).

[G3] Topology anonymity. iTAP hides the number of hosts
in a network. As an eavesdropper can not identify the net-
work host identifiers in packet headers, she can not count
the number of active network hosts.

3.3 Limitations

As an anonymity system, iTAP focuses on protecting the
header (i.e., the metadata) of the communication, not the
communication content which is assumed to be encrypted.
Similarly to other low-delay anonymity system such as
Tor [14], iTAP is sensitive to timing correlation attacks (e.g.,
[35,37]) — even though it makes them harder. Finally, iTAP
does not protect the first hop of the network as it resides
solely in the network, not on the host. We discuss these
limitations in the following.

[L1] iTAP does not protect against information leakage
from the payload. iTAP does not modify the payload and
can therefore not prevent information leakage there. For
example, if the used encryption scheme reveals information
about the communicating hosts or there is no encryption
used, an eavesdropper might be able to extract sensitive in-
formation despite the protection provided by iTAP. Besides
applying suitable encryption on the payload, iTAP could be
extended to work with P4 [10], a high-level language for
packet-processors that provides even more flexibility than
OpenFlow (regarding the modification of packet contents on
the switch, for example). Or, as an additional alternative,
iTAP can tunnel packets that reveal sensitive information
(for example the certificate exchange in SSL/TLS) through
the controller.

[L2] iTAP does not protect against payload and timing
correlation attacks. iTAP achieves anonymous communi-
cation by rewriting addresses in the packet header. It does
neither modify the payload nor does it change the order
of packets and can therefore not protect against payload
or timing analysis attacks. However, iTAP makes payload
or timing correlation attacks against particular hosts harder
because an attacker can no longer rely on packet headers
to identify packets related to the host. That is, before being
able to mount a corresponding attack, the attacker needs to
identify packets belonging to the hosts of interest by means
of expensive payload analysis.

[L3] iTAP does not protect against an eavesdropper
sitting on the first hop or on the host directly. Being

160 bits
A
r A

Maich-fields with ‘ MAC src] MAGC dst] 1P src] P dst ‘
arbitrary bitmasks

Interpret as bit-string ‘
of 160 bits

Randomly select bits

and ID

01001001

Add src and ID

Set other bits to
random values

[N Y T I |

Figure 3: Procedure to rewrite a flow header. The OpenFlow
match fields supporting arbitrary bit-masks are concatenated
and interpreted as a header bit-string of length 160 bits. The
source ID and the destination ID is encoded at randomly
chosen bit positions. Unused bits are set to random values.

network-based, iTAP’s protection region starts (resp. ends)
at the first (last) switch encountered, it therefore does not
protect from an eavesdropper sitting on the last hop or who
has compromised a host. This is essentially a design choice.
By making iTAP a pure in-network anonymity system, it
efficiently protects any internal communication, from any
connected devices. If privacy on the first/last link is a pri-
mary concern, one can install a software switch [44] on the
end host, similar to a VPN client. This provides some privacy
guarantees on the edge link too, as we will discuss in §10.

[L4] iTAP does not hide the overall amount of traffic in
a network While iTAP hides the amount of traffic that any
two hosts exchange, it does not change the amount of traffic,
nor the number of flows, which can then still be determined
by an eavesdropper.

4. REWRITING PACKET HEADERS

We now describe the two techniques iTAP uses to provide
strong anonymity properties at scale: (i) a hybrid obfuscation
scheme (§4.1); and (ii) the ability to distribute obfuscation
rules on multiple switches (§4.2).

4.1 Hybrid obfuscation scheme

As explained in §3, the best obfuscation scheme consists
in allocating a pseudo-random identifier to each flow. With
this scheme, the only information an eavesdropper sitting on
a link could infer from the headers is the number of flows
(not hosts) traversing the link. While this scheme provides
communication, volume and topology anonymity, it does not
scale, be it in the control plane (it requires the controller and
all on-path switches to be involved upon each new flow) nor
in the data plane (it requires all switches to maintain per-flow
state). At the other end of the spectrum, allocating a pseudo-
random identifier to each host, not flow, would scale well but
would not provide any of the anonymity guarantees.

In practice, we consider that |h| = 160 bits corresponding
to the MAC (source and destination) and IP (source and
destination) fields. Observe that hardware switches compat-
ible with OpenFlow 1.3 support arbitrary bit-masks match

on these fields, enabling flow rules to flexibly match on an
embedded h, no matter its position in the header.

iTAP uses a hybrid obfuscation scheme which combines
the anonymity benefits of a flow-based obfuscation with the
scalability properties of per-host obfuscation. Specifically,
iTAP relies on relatively small pseudo-random host-based
IDs i which are randomly mixed inside a larger randomized
packet header h (i.e., |h| < |h|). This mixing prevents an
eavesdropper from knowing which bits belong to h (which
would not be the case if |h| = |h|). However, unlike per-flow
obfuscation, this property does not hold over time. The more
flows an attacker sees, the more she can figure out which
parts of the header are fixed and infer the corresponding
h. We describe in §5 how iTAP monitors this leakage of
information by preventively adapting h before the attacker
could provably have seen enough flows.

Obfuscation procedure. To encode a source ID and a desti-
nation ID into a flow, the controller takes the following steps:

1. If the destination is not known yet or the obfuscation
mask corresponding to the destination can not be used
anymore (§5), the controller creates a new mask and
chooses a uniformly random destination ID. Otherwise,
the controller uses the existing mask and destination ID.

2. If the mapping from the source host to a source ID
does not yet exist for the given destination, the controller
chooses a uniform random source ID. iTAP can assign the
same host multiple source or destination IDs to increase
the entropy in packet headers.

3. The controller composes the rewritten header iL, which is
a uniform random bitstring combined with the bits of the
source and destination IDs at the locations defined by the
obfuscation mask (see Fig. 3).

4.2 Managing flow rules in the data plane

We now explain how iTAP manages data plane resources
by distributing flow rules onto multiple devices, if needed.
iTAP maintains two types of flow rules in the data-plane:

1. Rewriting rules perform the mapping from the real to the
rewritten header: M : h — h and vice-versa;

2. Forwarding rules forward packets based on their des-
tination ID (by matching on bits pertaining to h). Be-
fore traversing a legacy switch, the forwarding rule also
rewrites the destination MAC address to one belonging to
the next OpenFlow-switch (§7).

To maximize anonymity, rewriting rules should be located
as close as possible to hosts, ideally at the edge switch,
with only forwarding rules located in the network core.
iTAP therefore requires O (#hostsQ) rewriting rules at the
edge and O (#hosts) rules in the core. While these require-
ments readily enable iTAP to deal with large networks (§9),
some edge switches might not be able to cope with the
@ (#hostsQ) rewriting rules, especially Internet-facing ones.

Distributing rewriting rules. iTAP manages to keep the
number of flow rules within the hardware limits by dis-
tributing the rewriting rules on multiple switches, if needed.

= P &

L 29
h1 h3 | | (h1,h3)" ' (h1,h3)"| | h1" h3 h1 ' h3

Flow Packet . ‘. -~ S
== Regular s|d| (Anoymity \\ /Anoymity for',
== protected forint. a(.idr/ N \ext. addr. _/

-

iTAP
protection
region

Figure 4: As long as the resource constraints allow it, iTAP
fully protects every flow within the whole network (a).
Before the flow table of an edge switch congests, iTAP
delegates part of the rewriting to a core switch, which reverts
the rewriting of the external destination address (b). As a
consequence, h3 appears in clear in the highlighted packet.

Thereby, iTAP reduces the number of required rules at an
edge switch from O (#hosts?) to O (#hosts). Intuitively,
iTAP can offload edge switches by rewriting headers earlier
(resp. later) on in the network. Observe that shifting rewrit-
ing rules can be done without interrupting the affected flows.

Technically, shifting the rewriting of an external address
dst from the edge switch ES by one hop to the core switch
CS; works as follows. First, iTAP installs de-obfuscation
rules for all source addresses that are currently communi-
cating with dst at ES. In a first phase, these rules will
not match any packets because the arriving packets towards
dst still have a completely obfuscated header. Next, iTAP
installs rules in CS; to map the completely obfuscated header
to one where only the source address is obfuscated. As soon
as these rules are active, ES starts receiving packets towards
dst where only the source address is obfuscated. These
packets match the previously installed rules and the old rules
for the completely obfuscated header will automatically be
removed after an idle timeout.

Moving rewriting rules inside the network also means that
an eavesdropper could now observe unobfuscated addresses
on some links. To limit the anonymity loss, iTAP only
offloads rewrite rules for external (i.e., Internet) addresses,
never for internal ones.

We illustrate iTAP’s distribution process with an example
(see Fig. 4). As the load of the Internet-facing switch ES
approaches its limits (given by its specification), iTAP del-
egates parts of the rewriting rules to a core switch CS;. For

a flow between an internal host and an external (Internet)
server, CS; de-obfuscates the destination address for out-
going traffic, which leads to packets with an un-obfuscated
destination address and an obfuscated source address being
sent from CS; to ES. As a consequence, ES only needs
to de-obfuscate the source address (requiring O (#hosts)
rules). For returning packets, ES obfuscates the (internal)
destination address (O (#hosts) rules) and sends the packets
to CS; which performs the complete obfuscation of source
and destination addresses (O (#hosts?) rules).

As the packets for offloaded rules contain un-obfuscated
addresses before they leave the network, an eavesdropper
located on the link between CS; and ES can see the real des-
tination (source) addresses for outgoing (incoming) traffic.
However, note that: (i) internal addresses are always obfus-
cated; and (ii) the eavesdropper cannot determine whether
two connections belong to the same internal host.

Distribution strategies. The straightforward approach to
distribute the rewriting of external addresses is to first fill
the flow table of the edge switch, then offload the rewriting
one hop towards the internal source until the flow table of
this switch is also full. The rewriting rules are then offloaded
two hops away, etc. iTAP works with any distribution strat-
egy. For example, it is conceivable to prioritize flows (for
instance based on their source, destination or protocol) and
to choose the de-obfuscating switch based on this priority.

DoS mitigation. While iTAP’s concept of distributed rewrit-
ing provides good scalability at the network edge, it makes
iTAP’s anonymity guarantees depend on the number of
flows. Specifically, the more outgoing connections, the higher
the likelihood that the external endpoints of some connec-
tions are not protected within the whole network. An attacker
has therefore an interest in flooding the network with exter-
nal connections such that iTAP is forced to not protect the
external addresses of the real user’s traffic.

iTAP can protect itself from malicious hosts in two ways.
First, iTAP can be used in conjunction with any SDN-based
network anomaly detection system (e.g., [17, 26, 42]) to
detect or prevent such attacks. Second, as iTAP is aware of
the source of the flows, it can monitor the corresponding
rewriting resources used at the edge for each host. If a
host uses an unreasonable amount of ressources, iTAP can
distribute the rewrite rules of that host instead of arbitrary
ones. That way, only the flows of the malicious hosts would
end up suffering from lower anonymity guarantees. Note that
iTAP can be configured to not do this for important hosts.

S. CONTROLLING INFORMATION
LEAKAGE

iTAP’s hybrid obfuscation scheme (§4) comes with a
tradeoff between scalability and anonymity. In particular,
reusing the same ID across multiple flows would eventually
enable an attacker to identify the bits used to encode the
source and the destination of a packet. Specifically, if two
observed flows have equal values at the source (resp. desti-

nation) ID bits, the attacker can correlate that they originate
(resp. terminate) at the same host.

In this section, we describe how iTAP manages to (prov-
ably) prevent an attacker to infer the position of host IDs by:
(i) measuring the information leaked to any attacker using
the concept of unicity distance (§5.1); and (ii) adapt the
rewriting before she can provably break the scheme (§5.2).

5.1 Unicity distance

The capacity of an attacker to infer which bits are used
to encode the source and destination IDs depends on the
number and destinations flows she can observe. In the ideal
case, where the flow bitmasks used to encode the IDs ap-
pear like uniform random values and the payload of all IP
packets is encrypted, it becomes impossible for an attacker
to distinct between random bits and bits that are part of the
obfuscation mask. In another case, where only two hosts
communicate and the same source and destination IDs are
used all the time, it is comparably easy to distinct between
random bits and the bits that constitute the obfuscation mask.
To overcome this dependency from the network’s traffic
characteristics, iTAP uses the so-called unicity distance to
make sure that an attacker can not determine the obfuscation
mask. As we will explain below, the controller uses the same
mask only for a limited number of flows such that the non-
random ID bits are not distinguishable from random bits.

Unicity distance. For a secret-key cipher, Shannon [31]
defined the unicity distance U as the minimum number of
intercepted ciphertext symbols needed, in principle, to deter-
mine the secret key. A computationally unbounded attacker
which observes N > U ciphertext symbols and uses the
optimal estimation rule might be able to determine the secret
key and thus to break the cipher. On the other hand, the secret
key that an attacker derives when eavesdropping N < U
ciphertext symbols has a nonzero probability of error.
According to [31], the approximate number of intercepted
ciphertext symbols, defined as the unicity distance, is

U="7 (1)

where H(K) is the entropy in the key space and D is the
redundancy of the language.

5.2 When to adapt the encoding

We now explain how we use the unicity distance as a
lower bound on the number of flows an attacker needs to
eavesdrop until she might be able to determine the source
and destination IDs of a flow. We say that an attacker is
successful if she identified which bits are used for the source
ID and for the destination ID, respectively. Therefore, the
successful attacker will be able to determine the IDs of the
source and destination of each flow. However, the attacker
will not know the mapping between IDs and hosts.

The equivalent of a secret key in this case is the selection
of bits used for the source and the destination ID. Then, the
key must contain the following information:

e Which bits are part of the obfuscation mask (and thus
used for the source ID or the destination ID);

e Which of these bits are used for the source ID and
which of them are used for the destination ID.

For a header-bitstring of length [, there are (lmlj;l ﬁ)
possible obfuscation masks to encode a source ID of i's;c
bits and a destination ID of [;,; bits. For each of these
masks, there are (l”;:ﬁd“) = (l“‘fti““) possible partitions
between the source ID and the destination ID.

Since the bits are chosen uniformly at random, the entropy
of a key that specifies which of the [, bits to use as a source
ID and as a destination ID computes to

l ZSTC ZS
H(K):10g2(<z ~+hzdt)>“0g2(< lvﬂt»
‘ ‘)

The second parameter in (1), the redundancy D, we see as
the difference (in terms of entropy) between uniform random
headers and the actually used bit-strings.

Out of the I}, available bits, (/s +14s¢) are used to encode
the IDs. Therefore, I}, — (Isrc + l4s¢) bits are set to uniform
random values and the redundancy is upper bounded by

D < lsrc + ldst (3)

By inserting (2) and (3) into (1), we end up with the follow-
ing expression for the unicity distance:

10g2 ((lsml_::ldst)) + log2 ((lsr;:idst))

Ul 7ZST‘Cal st) =
(h ¢ f) Zsrc + ldst

“)

U = 10, for example, means that an unlimited attacker

is theoretically able to determine the bits that represent the

source and the destination IDs after observing 10 different
flows towards the same destination'.

6. DETECTING AND LOCALIZING AN
ATTACKER

Besides passively analyzing network traffic, an attacker
might want to inject traffic on intercepted links. In this
section, we explain why the header rewriting performed
by iTAP and the central controller significantly reduce the
prospects of such an attacker.

Remember from §4 that rewritten traffic is forwarded
based on its destination ID and from §3 that every packet
that does not match one of the flow rules is sent to the
controller. With respect to the injected traffic, the attacker
has two options. She can either perform a replay attack by
injecting traffic with the same header as one of the packets
she eavesdropped previously, or she can inject traffic with
different headers.

In the first case, the traffic will reach the destination
because the header corresponds to a valid rewritten header
that the controller has assigned. However, since the header

!Only flows towards the same destination are relevant be-
cause other flows use a different obfuscation mask.

is pseudo-random, the attacker neither knows the real source
nor the destination of the replayed header.

In the second case, the attacker will be even less success-
ful. If she injects traffic with a destination ID that was not
previously used on this link, the next switch will not have a
matching flow table entry and therefore send the packet to
the controller. iTAP will come to the result that this packet
does not belong to a flow that was properly rewritten and that
the port where the injected packet arrived on is not connected
to a host but to another switch. Therefore, the packet does
neither belong to a known flow nor can it come from a
legitimate host, which means it must have been illegally
injected at the link connected to the port where the switch
received it.

7. PARTIAL DEPLOYMENT

iTAP can be used in networks consisting of a mixture of
OpenFlow-switches and traditional MAC-learning switches.
Rewriting packet headers is done by the OpenFlow-switches
while the legacy switches simply forward packets based on
their destination MAC address.

Forwarding packets through legacy switches. Before tra-
versing a legacy switch, iTAP changes the destination MAC
address to a MAC address belonging to the next OpenFlow-
switch in the flow’s path. To make sure that the legacy
switches know where to forward packets, the OpenFlow
switches periodically exchange packets with the source
MAC address set to the ones belonging to the respective
OpenFlow-switch. As a consequence of this, iTAP must not
use the destination MAC field to encode the source and / or
destination ID for flows that traverse legacy switches.

OpenFlow-switches only at the network edge. iTAP can
protect traffic as long as there are at least two OpenFlow-
switches in the path: The first OpenFlow-switch rewrites the
header to a pseudo random value while the last one reverts
this process. If there are two OpenFlow-switches in the path,
these are ideally the ingress and the egress switches because
then, iTAP protects the flow through the whole network. If
the ingress and the egress switch of all flows are OpenFlow-
enabled, i.e., there are OpenFlow-switches everywhere at the
network edge, iTAP protects all traffic inside the network. In
the evaluation in §9.2, we show that a small share of SDN
switches is enough to protect a large share of the network.

Limitations. We acknowledge that partially deploying iTAP
is problematic if there is no path at L2 between all hosts in a
network (i.e., because there are different VLANSs). Further,
under certain (very rare) circumstances, the randomly cho-
sen MAC addresses that iTAP uses to send traffic through
legacy switches might collide with MAC addresses of hosts
directly connected to these legacy switches. However, note
that this can only happen if (i), the random MAC address
corresponds to the one of such a host; (ii), the host is directly
connected to a legacy switch that traffic with the random
MAC address crosses; and (iii) the iTAP controller is not
aware of this host (e.g., because it was not active before).

8. IMPLEMENTATION

We implemented a prototype of iTAP on top of Flood-
light, a Java-based OpenFlow-controller [43]. Overall, our
implementation consists of ~2,000 lines of Java-code.

Architecture. We use Floodlight and extend it by a set
of modules that manage the rewriting of flow headers, the
information leakage to a potential attacker and the state of
switches and links.

Handling new flows. Regarding rewriting, our controller is
reactive in a sense that it computes and installs rules after
the first packet of a new flow enters the network. By default,
each packet that does not match an existing flow rule is sent
to the controller. This does also happen for the first packet of
a new flow and the controller will then perform the rewriting
and install the required flow rules as we described in §4.

Acting as proxy. Before the first packet of the actual flow
is sent, there might be an ARP request for the destination
MAC. Since the payload of ARP packets contains informa-
tion that we want to hide (namely IP and MAC addresses that
are used in the network), these messages cannot be flooded
through the network as it would normally be done. Instead,
iTAP directly answers to ARP requests. If the controller does
not know the answer yet, it sends an ARP request to all hosts.
These requests are sent to the switches via the secure channel
and thus only cross links between hosts and switches but no
links that interconnect switches.

iTAP can easily be extended to proxy messages from other
protocols (such as the certificate exchange in the SSL/TLS
handshake or DHCP information).

9. EVALUATION

In this section, we evaluate iTAP with respect to scalabil-
ity and the protection in partial deployment settings.

9.1 Scalability

We evaluate the real-world feasibility of iTAP based on
network traffic of real users. In the following, we first intro-
duce the corresponding dataset and our processing. Then we
evaluate the data plane and the control plane scalability.

9.1.1 Dataset and methodology

Baseline information. Our dataset covers the network traffic
going over a core switch in our university campus network.
This switch connects our research institute to the rest of
the university campus network, as well as to the Internet.
The switch has been configured to export connections in
NetFlow v9 [2] format. We process the NetFlow data using
the nfdump tools? and feed the data to our iTAP emulator.
NetFlow exports unidirectional flows (i.e., a bidirectional
TCP connection is reported as two flows). This makes it well
suitable for our evaluation, as our SDN controller operates
on the level of unidirectional flows too.

Our data spans one week (Wed—Tue) in January 2016. We
observe around 100 internal IPv4 addresses and about the

Zhttps://sourceforge.net/projects/nfdump/

Time # local clients/day

span IPv4 IPv6 #1Ps/day # flows/day
work days:

5x24h 97£3.8 106£6.4 56*x14k 52+07M
weekend:

2x24h 60£2.8 46428 23+2.6k 3.1£0.05M

Table 2: Baseline information on our dataset. The local
clients displayed in the table cause 32 M flows in total.
The three excluded clients running bitcoin experiments (not
considered in the table) cause additional 93 M flows.

same number of [Pv6 addresses during work days. The net-
work is configured with a dual stack configuration, meaning
that many devices will probably have an IPv4 and an IPv6
address assigned. Therefore, we conservatively estimate that
our data represent the activity of around 100 devices. As our
primary goal is to evaluate how many hosts our approach
can handle, we exclude the activities of three devices that
run an automated bitcoin experiment, causing millions of
flows per day, from the presented statistics. Still, we will
briefly discuss the impact of these devices and show that our
approach can also handle these special traffic characteristics
in §9.1.2. Table 2 summarizes our data.

The most critical parameter affecting scalability is the
number of concurrent uniflows that each client triggers,
because one rule needs to be installed in an edge switch
for every source and destination address (short: (src,dst))
pair. We show an upper bound for the maximum number
of (src,dst) pairs per internal IP address and day in Fig. 5a.
Over the whole week, only 10 % of the clients are involved in
more than 170 concurrent (src,dst) pairs. The 99th percentile
is ~370, and the maximum number of (src,dst) pairs per
client is ~=520.

Further, the duration of connections is relevant regarding
the extrapolation presented below. The duration of most
connections is small (see Fig. 5b): 95 % of all connections
are not longer than 15 s and 99 % are shorter than 50 s.

Handling of incorrectly timestamped flows. Unfortunately,
our dataset is affected by a problem in the NetFlow exporting
procedure. The problem, which periodically occurs approxi-
mately every 68 minutes, affects the timestamps of exported
flows for a duration in the order of 10 to 20 minutes. During
these time intervals, the flow timestamps are shifted in time,
resulting in intervals without reported flows. We cope with
this issue in our simulation by only including the 30 minutes
of every period in which the counts are highest. We point out
that some of the incorrectly timestamped flows will appear
in our analyzed time window and we will thus (incorrectly)
include them in our analysis. However, including additional
flows will negatively impact the measured performance.
That is, we rather underestimate the performance of iTAP.

Scaling the dataset. Our NetFlow data represents the activ-
ity of around 100 internal devices. In order to evaluate the
scalability of our approach for more clients, we introduce
additional users by copying the behavior patterns of the real

https://sourceforge.net/projects/nfdump/

T T
— Mon 10°
Tue 5
: : : : — Wed 107
PR i1 |e-e Thu || o
%107 : oo Fi 2 107 F
5 A
& @@ Sat % 10% [
i A—4A Sun a
- - ey
8 107} 1 g 10
o g
10° |
: oo 10°
-3 |1 1 1 1 1 1 B
10
0 100 200 300 400 500 107 LA

il il il il il il
0 100 200 300 400 500 600
Duration of connections [s]

max. concurrent flow end points
per internal client

(a) Max. # concurrent src/dst
address pairs per internal client
(upper bound).

(b) Duration of connections.

Figure 5: Connection statistics for each of the seven days.

users, i.e., we create clones of the clients. We clone a client
by selecting all its flows and injecting the flows again with (7)
a different client IP address at (ii) a randomly selected later
point in time. We place each cloned flow at least one minute
apart from the original flow and any previous clone of the
same flow. Because 99 % of the flows are shorter than 50 s
(see Fig. 5b), this means that the activities of the original and
the cloned client(s) will barely overlap®. In total, we create
three clones of every internal client IP, resulting in a dataset
that is scaled by a factor of four containing 128 M flows
representing the activity of 400 internal devices.

Protecting the privacy of users during our analysis. As
our evaluation is based on real user data, we take several
measures to protect the privacy of the users. In particular,
we process the NetFlow data on an isolated, locked-down
server, which only project workers can access. The project
workers are well-aware of the sensitive nature of the data
and conduct the experiments according to a code of ethics.
We anonymize the internal network’s IP addresses during
processing and do not report any IP addresses in our work.
All data are stored on encrypted hard disks. Further, the
published information has been verified and declassified by
the data provider.

9.1.2 Data plane scalability

Regarding scalability in the data plane, the most crucial
factor is the number of flow rules installed in switches. In the
following paragraphs, we show that iTAP can operate within
the typical resource constraints of commodity hardware on
core and edge switches. Fig. 6 summarizes our evaluation.

Flow rules in core switches. In the core switches, packets
are forwarded based on their destination ID. This means,
a core switch needs to contain one forwarding rule per
destination ID or, in other words, one rule per host that
communicates via this switch. Our evaluation based on 400
users and one week of traffic shows that the total number
of flow rules does not exceed 2.5k (see Fig. 6, top left).

3The larger the offset, the more flows can potentially be
placed in the regions affected by the timestamp bug. This
is why we do not use a larger time offset.

This is perfectly manageable for the current generation of
OpenFlow switches which can handle thousands [6] up to
millions [1] of flow table entries.

Flow rules in edge switches. Edge switches take care of
(de-)anonymizing flows that (exit) enter the network. For
example, to deanonymize a packet before it is transmitted to
an attached host, the switch replaces the randomized source
and destination addresses with the original MAC and IP
addresses. To this end, the edge switch requires one flow
rule for every (source, destination) pair. That is, the first TCP
connection a client C' established with a server .S results in
two pairs (C, S) and (S, C), and therefore two new rules.
Additional concurrent connections between C' and S do not
require any additional flow rules.

We distinguish between two kinds of edge switches: (i)
internal commodity edge switches to which clients are at-
tached (e.g., in an office room) and (ii) the edge switch/router
connecting the enterprise network to the Internet.

For case (i), the clients are physically connected to these
switches via a LAN cable. We don’t have detailed informa-
tion on how clients are connected to edge switches in the
evaluated network. Therefore, we present in the following a
kind of worst case scenario: Typical larger commodity SDN
switches have 24 or 48 LAN ports and can handle 10 k
flow rules. As previously discussed, nine out of ten clients
(90th percentile) cause less than 170 flow entries during peak
times. Assuming that 48 clients have their daily peaks at the
same time and all of these clients concurrently generate 170
flow entries We still only need 8.2 k (48 x 170) rules, which
is well within the maximum number of installable rules.

For case (ii), the worst case is that all uniflows leave the
network or come from externally, i.e., they all need to pass
the edge switch/router. The corresponding simulation results
are shown in Fig. 6, top right. The maximum is around 30 k.

Also without excluding the hosts running the bitcoin ex-
periments, the maximum number of flow table entries would
still be in a feasible range (around 8 k for the original dataset
with 100 users). But, the number of flow rules at the edge
switch connected to these three hosts would exceed 10 k.

To cope with the problem that the Internet/WAN-facing
edge switches might become overloaded, we introduced
a distributed rewriting technique in §4.2. Performing this
technique at the Internet/WAN-facing network edge, iTAP
avoids exceeding the flow table capacities of the switch.

In Fig. 9, we show the effect of offloading the rewriting
of certain external addresses from the Internet-facing edge
switch to a core switch. The plot shows the situation at one
point in time (the second with the highest number of flow
rules at the edge switch) for our original dataset contain-
ing traffic of 100 users. We simulated the straightforward
distribution strategy of offloading destinations according to
their popularity (i.e., the destination accounting for most
flows is distributed first). We motivate this strategy by the
assumption that the more popular an external address is,
the less it is a secret that hosts connect to it. However,
as we have explained in §4.2, the network operator is free
to choose any other distribution strategy. As Fig. 9 shows,

Rules in Concurrent

core switch flows
2500 7'y T 35000 T T
2000 * | 30000
& 25000 |
1500 - 1 20000
10001 & - 15000
v 10000 1
500 x 1 soof & 1
0 L L 0 i brd
max avg max avg
Controller New flow
actions /' s rules /s
700 - 300 - -
eo[¥ q 250 ¥
500 |- 4 a0l
ggg [X 1 wsof %
200 |- s 100 - 1
T00f Y 1 st ¢
0 L L 0 L L
max avg max avg
+ Mon + Wed V Fri X Sun
Tue A Thu Sat

Figure 6: iTAP scales to
large networks: These
graphs are based on
seven days of traffic data
representing 400 hosts.

I I I I I
10° 10* 10° 10° 10° 10°
Number of masks per host

Figure 7: iTAP overhead
is small: For 50 % of the
hosts, it needs to compute
only one destination ID and
mask per day.

100

80

60

40

Protection level

20 £ e

0
0 2 40 60 80 100
% of supporting switches

— Linear (iTAP)
Star (iTAP)
— Tree (iTAP)

- Linear (MACsec)
Star (MACsec)
«+ Tree (MACsec)

Figure 8: Only a small share
of SDN-enabled switches is
sufficient for iTAP to pro-
tect a large share of the net-
work traffic.

900

T T T T
—— Rules for (src,dst)

: Rules for src / dst ||
700 1 -1 — Rules in total

800

600
500 -
400 -
300 -
200 -

Number of rules at edge switch

100 -

0 20 40 60 80 100
% of offloaded destinations

Figure 9: Offloading a small
share of the external desti-
nations results in a signifi-
cant decrease in the number

offloading only a few destinations results in a significant
decrease in the required number of flow rules. Thus, by
distributing the rewriting of external addresses, iTAP scales
even at the Internet/WAN-facing network edge while still
providing anonymity for all internal addresses.

9.1.3 Control plane scalability

We now show that iTAP is able to handle the load imposed
by the network. iTAP’s controller needs to (i) act on events
trigged by switches when new flows arrive and (ii) install
corresponding obfuscation rules on switches. In this section,
we evaluate the number of flows that the controller needs
to handle, measure the number of newly installed rules, and
compare these numbers to a standard SDN deployment.

Controller actions. If a packet does not match an existing
flow rule, the switch sends a “packet-in” message to the
controller. Edge switches trigger a packet-in message if there
is no rule for the (source, destination) tuple of the newly
arrived packet. In our evaluation, we observed a maximum
of 700 packet-in messages per second (see Fig. 6, bottom
left). Such a load is perfectly reasonable as current controller
platforms can handle millions of packet-ins per second [38].

Flow table updates. Upon an incoming packet-in message,
the controller pushes new rules to the switches via flow-mod
messages. At the edge switches, each packet-in message will
be followed by a new flow rule, while in the core switches,
a new rule is only required if the destination is not used yet.
As shown in Fig. 6 (bottom right), there were at most 250
new rules to install per second in the core switch while a
maximum of 700 new flows (Fig. 6, bottom left) per second
were reported to the controller. Again, such a number of
table updates is well within the capabilities of existing SDN
switches for which installing a new rule is done within
1 millisecond, on average [29].

of required flow rules.

Anonymity overhead. We now evaluate iTAP overhead
with respect to a normal SDN controller which only needs to
act once per destination address that appears in the network.
In Fig. 7, we show that this also holds for around 50 percent
of the hosts when using iTAP. For these hosts, the controller
can use the same destination ID and mask over the whole
day without violating our protection guarantees (§5). For the
other hosts, the controller needs to switch the obfuscation
masks during a day, but as we showed above, the controller
can easily handle this load.

9.2 Partial deployment

While iTAP can be deployed if only a small share of the
switches support SDN (§7), this results in weaker anonymity
guarantees. In the following, we evaluate the amount of pro-
tection iTAP provides in different partial deployment scenar-
ios. As baseline, we consider the protection level provided
by a corresponding, partially deployed MACsec network.

We do the analysis for a linear, star and binary tree topol-
ogy, each consisting of 127 switches. We gradually increase
the percentage of OpenFlow switches from 0 % to 100 % and
place the OpenFlow-capable switches at random positions
in the network. Fig. 8 shows the percentage of OpenFlow-
capable switches on the x-axis, and the resulting protection
level (averaged over 1000 runs of the simulation).

We compute the protection by simulating a flow between
every pair of edge switches (the leaf nodes of the star and
tree topology, and all nodes of the linear topology) and
compute the percentage of links that are protected. The total
protection level plotted in Fig. 8 is the average protection
value across all connections.

While iTAP protects traffic between the first and the last
OpenFlow switch in the path, MACsec can only protect
traffic on enabled links. This explains the significantly lower
protection level for partial deployment.

10. DISCUSSION

In this section, we briefly discuss different failure and
attack scenarios.

Attackers on first/last hops. While iTAP fully protects
internal links (see Fig. 2), it does not protect host-facing
links. If an attacker has intercepted a link between a host
and an edge switch, she can observe unprotected traffic from
and to this host. But this does not allow an attacker to draw
any conclusions about the traffic of other, unrelated hosts
nor does it help to break the anonymity of other flows. That
is, the impact of the attacker is limited to the eavesdropped
host’s communication. As an additional protection measure,
one can install a virtual SDN switch (e.g., [44]) on the
host. This makes the “first hop” internal to the host. Such
a setup provides communication anonymity of remote hosts,
but it does not prevent an attacker from analyzing the traffic
patterns of the tapped host.

Compromised switches. If an attacker has access to a
switch, for example through a backdoor in the switch’s
firmware, she can read and modify the flow table. In a core
switch, the flow table reveals the destination IDs used on this
switch and the corresponding actions (output at which port).
But the flow table neither reveals the used source IDs nor the
real source and destination addresses of packets.

In the flow tables of edge switches, the attacker can see
the mapping from the real header h to the rewritten header h
for all packets from or to hosts connected to the switch. An
attacker that can alter the flow table of a switch can perform
a DoS attack by dropping packets. Further, an attacker can
send spoofed messages to the controller. Such attacks are
outside of our scope but addressed in existing work [23].

Compromised controller. As any SDN-based solution, iTAP
security inherently depends on the security of the controller
platform. Several works looked at the problem of securing
SDN controllers, especially protecting them from rogue ap-
plications or users [23,27,28]. A recent survey is available
in [8]. Since iTAP relies on few SDN primitives, its logic
could easily be implemented in any of these platforms.

Controller failure. If the controller crashes and loses its
state, this does not affect existing connections because for
these, the required flow rules are already installed. As soon
as the controller is up again, it will build its new state from
the newly arriving packets. For these new connections, it will
choose new source and destination IDs which means that the
protection guarantees do still hold. If the controller is not
available, switches will not receive commands how to handle
new connections and therefore drop the packets.

Malicious overloading of switches. An attacker on an end
host might intentionally cause a large number of flows to
different hosts to exhaust the switches’ flow rule tables. As
iTAP’s controller has a global view over all connections in
the network, it can easily prevent this attack by limiting the
number of obfuscated flows (and thus flow rules) that a host
can initiate. If an end point exceeds the limit, new flows
could either be blocked or be forwarded unobfuscated.

11. RELATED WORK

iTAP is related to existing work in network obfuscation,
moving target defense and anonymous communication.

Network obfuscation and moving target defense. The
topic of dynamically changing network configurations in
order to present a misleading view to an attacker has been
addressed in a variety of proposals in literature. Previous
work describes concepts to obfuscate traffic by changing the
network architecture (e.g., [11]), by applying cryptographic
algorithms on packets [21], by randomly changing the IP ad-
dresses and TCP/UDP ports [9,20,25,32,39,40], by means of
multipath routing [16] or by protocol-specific modifications
of packets [19]. However, existing solutions require changes
at hosts [21, 32, 39, 40] and/or are only usable for specific
operating systems, applications or protocols [16, 19,25,32].
Solutions that can be deployed without modifying hosts
require additional middleboxes [11,21], tamper with exist-
ing connections [9] or suffer from synchronization prob-
lems [21,39]. A recent publication describes PHEAR [33],
a system that replaces source and destination addresses by
random values (nonces). This concept is similar to iTAP
but while it additionally encrypts packet data beyond the
network layer, it does not address scalability issues (number
of flow rules) and the rewriting / encryption is handled by a
proxy that needs to be installed at hosts.

Anonymous communication and encryption. Onion Rout-
ing [18] and its implementation in TOR [14] are probably
the best known solutions for providing anonymous commu-
nications. Recently, a couple of systems have been proposed
that bear similarities with Tor but provide better scalability,
performance or traffic analysis prevention [12,13,15,24]. In
contrast to iTAP, these systems require changes at the end
hosts or a whole new network architecture.

Encryption schemes such as IPsec [45] and MACsec [5]
also provide anonymous communication to a certain extent
but they do not hide the endpoints connections (IP / MAC
addresses). Further, these solutions require support from the
endpoints (IPsec) or all switches in the network (MACsec).

12. CONCLUSION

In this paper, we presented iTAP, a novel anonymity
framework, which enables anonymous communication within
the premises of a network. iTAP is an in-network system, it
requires no changes to hosts and can be partially deployed.

iTAP achieves its anonymity properties by rewriting packet
headers at the network edge. While the idea of rewriting
packet headers is simple, doing it at scale while guaranteeing
strong anonymity is challenging. We solve this challenge by
introducing a novel rewriting scheme which combines the
anonymity benefits of having a single-use ID per flow with
the scalability benefits of having a constant ID per host.

We implemented iTAP on top of an existing SDN con-
troller and evaluated its usability and performance using real
network traffic traces. We show that iTAP works in practice,
on existing hardware. Moreover, a few SDN switches are
enough to protect a large share of the network traffic.

13. REFERENCES

[1] B1SDN product brief. http://www.znyx.com/wp-content/
uploads/2015/05/B1_SDN_brief 101414_web.pdf.

[2] Cisco I0S NetFlow. http://www.cisco.com/c/en/us/products/
i0s-nx-os-software/ios-netflow/index.html.

[3] Enterprise campus 3.0 architecture: Overview and
framework. http://www.cisco.com/c/en/us/td/docs/solutions/
Enterprise/Campus/campover.html.

[4] IBM x-force threat intelligence quarterly, 2Q 2015.
https://public.dhe.ibm.com/common/ssi/ecm/wg/en/
wgl03076usen/WGL03076USEN.PDF.

[5] Media access control (MAC) security. http://standards.ieee.
org/getieee802/download/802.1 AE-2006.pdf.

[6] Noviswitch 2122 high performance openflow switch.
http://noviflow.com/wp-content/uploads/
NoviSwitch-2122-Datasheet- V2_1.pdf.

[7] RFC 6325 - routing bridges (rbridges).
https://tools.ietf.org/html/rfc3031, July 2011.

[8] 1. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov. Security
in software defined networks: a survey. Communications
Surveys & Tutorials, IEEE, 17(4), 2015.

[9] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G.
Anagnostakis. Defending against hitlist worms using
network address space randomization. Computer Networks,
51(12), 2007.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, et al. P4: Programming protocol-independent
packet processors. ACM CCR, 44(3), 2014.

[11] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,

D. Boneh, N. McKeown, and S. Shenker. Sane: A protection
architecture for enterprise networks. In USENIX Security,
2006.

[12] D. Chaum, F. Javani, A. Kate, A. Krasnova, J. de Ruiter, and
A. T. Sherman. cmix: Anonymization by high-performance
scalable mixing.

[13] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig.
Hornet: High-speed onion routing at the network layer. In
ACM SIGSAC, 2015.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Technical report, DTIC,
2004.

[15] K. P. Dyer, S. E. Coull, and T. Shrimpton. Marionette: A
programmable network traffic obfuscation system. In
USENIX Security, 2015.

[16] E. Germano da Silva, L. A. Dias Knob, J. A. Wickboldt, L. P.
Gaspary, L. Z. Granville, and A. Schaeffer-Filho.
Capitalizing on SDN-based SCADA systems: An
anti-eavesdropping case-study. In IFIP/IEEE IM, 2015.

[17] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras,
and V. Maglaris. Combining openflow and sflow for an
effective and scalable anomaly detection and mitigation
mechanism on SDN environments. Computer Networks, 62,
2014.

[18] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2), 1999.

[19] K. E. Huber. Host-based systemic network obfuscation
system for windows. Technical report, DTIC, 2011.

[20] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random
host mutation: transparent moving target defense using
software defined networking. In ACM HotSDN, 2012.

[21] D. Kewley, R. Fink, J. Lowry, and M. Dean. Dynamic
approaches to thwart adversary intelligence gathering. In
IEEE DARPA DISCEX, volume 1, 2001.

[22] O. Khazan. The creepy, long-standing practice of undersea
cable tapping. http://www.theatlantic.com/international/
archive/2013/07/id/277855/, July 2013.

[23] D. Kreutz, F. Ramos, and P. Verissimo. Towards secure and
dependable software-defined networks. In ACM HotSDN,
2013.

[24] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani,
and P. Francis. Towards efficient traffic-analysis resistant
anonymity networks. In ACM CCR, volume 43, 2013.

[25] D. C. MacFarland and C. A. Shue. The SDN shuffle:
Creating a moving-target defense using host-based
software-defined networking. In ACM MTD, 2015.

[26] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting traffic
anomaly detection using software defined networking. In
International Workshop on Recent Advances in Intrusion
Detection. Springer, 2011.

[27] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow
networks. In ACM HotSDN, 2012.

[28] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and
V. Yegneswaran. Securing the software defined network
control layer. In NDSS, 2015.

[29] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. Oflops: An open framework for openflow switch
evaluation. PAM, Berlin, Heidelberg, 2012. Springer-Verlag.

[30] M. Seaman. Shortest path bridging.
http://ieee802.org/1/files/public/docs2005/
new-seaman-shortestpath-par-0405-02.htm, 2005.

[31] C. E. Shannon. Communication theory of secrecy systems.
Bell system technical journal, 28(4), 1949.

[32] L. Shu and W. Weinstein. Camouflage of network traffic to
resist attack, Jan. 30 2007. US Patent 7,171,493.

[33] R. Skowyra, K. Bauer, V. Dedhia, and H. Okhravi. Have no
phear: Networks without identifiers. In ACM MTD, 2016.

[34] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter. Past:
Scalable ethernet for data centers. In ACM CoNEXT, 2012.

[35] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,

M. Chiang, and P. Mittal. RAPTOR: Routing attacks on
privacy in TOR. In USENIX Security, 2015.

[36] C. Timberg. Google encrypts data amid backlash against
NSA spying. http://wapo.st/l1adFyAe.

[37] L. Vanbever, O. Li, J. Rexford, and P. Mittal. Anonymity on
quicksand: Using BGP to compromise TOR. In ACM
HotNets, 2014.

[38] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak.
Maple: simplifying SDN programming using algorithmic
policies. In ACM CCR, volume 43, 2013.

[39] F. Webber, P. P. Pal, M. Atighetchi, C. Jones, and P. Rubel.
Applications that participate in their own defense (apod).
Technical report, DTIC, 2003.

[40] W. Weinstein and J. Lepanto. Camouflage of network traffic
to resist attack (contra). In DARPA DISCEX, volume 2, 2003.

[41] N. Zaidenberg and A. Resh. Timing and side channel attacks.
In Cyber Security: Analytics, Technology and Automation.
Springer, 2015.

[42] Y. Zhang. An adaptive flow counting method for anomaly
detection in SDN. In ACM CoNEXT, 2013.

[43] Floodlight openflow controller.
https://github.com/floodlight/floodlight.

[44] Open vswitch. http://openvswitch.org/.

[45] RFC 4301 - security architecture for the internet protocol.
https://tools.ietf.org/html/rfc4301, Dec 2005.

http://www.znyx.com/wp-content/uploads/2015/05/B1_SDN_brief_101414_web.pdf
http://www.znyx.com/wp-content/uploads/2015/05/B1_SDN_brief_101414_web.pdf
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/campover.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/campover.html
https://public.dhe.ibm.com/common/ssi/ecm/wg/en/wgl03076usen/WGL03076USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/wg/en/wgl03076usen/WGL03076USEN.PDF
http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf
http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch-2122-Datasheet-V2_1.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch-2122-Datasheet-V2_1.pdf
https://tools.ietf.org/html/rfc3031
http://www.theatlantic.com/international/archive/2013/07/id/277855/
http://www.theatlantic.com/international/archive/2013/07/id/277855/
http://ieee802.org/1/files/public/docs2005/new-seaman-shortestpath-par-0405-02.htm
http://ieee802.org/1/files/public/docs2005/new-seaman-shortestpath-par-0405-02.htm
http://wapo.st/1adFyAe
https://github.com/floodlight/floodlight
http://openvswitch.org/
https://tools.ietf.org/html/rfc4301

	Introduction
	Network and threat model
	Overview
	iTAP
	Anonymity guarantees
	Limitations

	Rewriting packet headers
	Hybrid obfuscation scheme
	Managing flow rules in the data plane

	Controlling information leakage
	Unicity distance
	When to adapt the encoding

	Detecting and localizing an attacker
	Partial deployment
	Implementation
	Evaluation
	Scalability
	Dataset and methodology
	Data plane scalability
	Control plane scalability

	Partial deployment

	Discussion
	Related work
	Conclusion
	References

